Полезные статьи

Закон превращения энергии кто открыл

Радиоактивность

Радиоактивность — это способность атомов некоторых изотопов самопроизвольно распадаться, испуская излучение. Впервые такое излучение, испускаемое ураном, обнаружил Беккерель, поэтому вначале радиоактивные излучения называли лучами Беккереля. Основной вид радиоактивного распада — выбрасывание из ядра атома альфа-частицы — альфа-распад (см. Альфа-излучение) или бета-частицы — бета-распад (см. Бета-излучение).

При радиоактивном распаде исходный атом превращается в атом другого элемента. В результате выбрасывания из ядра атома альфа-частицы, представляющей собой совокупность двух протонов и двух нейтронов, массовое число образующегося атома (см.) уменьшается на четыре единицы, и он оказывается сдвинутым в таблице Д. И. Менделеева на две клетки влево, так как порядковый номер элемента в таблице равен числу протонов в ядре атома. При выбрасывании бета-частицы (электрон) происходит превращение в ядре одного нейтрона в протон, вследствие чего образующийся атом оказывается сдвинутым в таблице Д. И. Менделеева на одну клетку вправо. Масса его при этом почти не изменяется. Выбрасывание бета-частицы сопряжено обычно с гамма-излучением (см.).

Распад любого радиоактивного изотопа происходит по следующему закону: число распадающихся в единицу времени атомов (n) пропорционально числу атомов (N), имеющихся в наличии в данный момент времени, т. е. n=λN; коэффициент λ, называется постоянной радиоактивного распада и связан с периодом полураспада изотопа (Т) соотношением λ= 0,693/T. Указанный закон распада приводит к тому, что за каждый отрезок времени, равный периоду полураспада Т, количество изотопа уменьшается вдвое. Если образующиеся в результате радиоактивного распада атомы оказываются тоже радиоактивными, то происходит их постепенное накопление, пока не установится радиоактивное равновесие между материнским и дочерним изотопами; при этом число атомов дочернего изотопа, образующихся в единицу времени, равно числу атомов, распадающихся за то же время.

Известно свыше 40 естественных радиоактивных изотопов. Большая часть их расположена в трех радиоактивных рядах (семействах): урана-радия, тория и актиния. Все указанные радиоактивные изотопы широко распространены в природе. Присутствие их в горных породах, водах, атмосфере, растительных и живых организмах обусловливает естественную или природную радиоактивность.

Кроме естественных радиоактивных изотопов, сейчас известно около тысячи искусственно радиоактивных. Получают их путем ядерных реакций, в основном в ядерных реакторах (см. Реакторы ядерные). Многие естественные и искусственно радиоактивные изотопы широко используются в медицине для лечения (см. Лучевая терапия) и особенно для диагностики заболеваний (см. Радиоизотопная диагностика). См. также Излучения ионизирующие.

Радиоактивность (от лат. radius — луч и activus — действенный) — способность неустойчивых ядер атомов самопроизвольно превращаться в другие, более устойчивые или стабильные ядра. Такие превращения ядер называются радиоактивными, а сами ядра или соответствующие атомы — радиоактивными ядрами (атомами). При радиоактивных превращениях ядра испускают энергию либо в виде заряженных частиц, либо в виде гамма-квантов электромагнитного излучения или гамма-излучения.

Превращения, при которых ядро одного химического элемента превращается в ядро другого элемента с другим значением атомного номера, называют радиоактивным распадом. Радиоактивные изотопы (см.), образовавшиеся и существующие в природных условиях, называют естественно радиоактивными; такие же изотопы, полученные искусственным путем посредством ядерных реакций,— искусственно радиоактивными. Между естественно и искусственно радиоактивными изотопами нет принципиальной разницы, так как свойства ядер атомов и самих атомов определяются только составом и структурой ядра и не зависят от способа их образования.

Радиоактивность была открыта в 1896 г. Беккерелем (А. Н. Becquerel), который обнаружил излучение урана (см.), способное вызывать почернение фотоэмульсии и ионизировать воздух. Кюри-Склодовская (М. Curie-Sklodowska) первая измерила интенсивность излучения урана и одновременно с немецким ученым Шмидтом (G. С. Schmidt) обнаружила радиоактивность у тория (см.). Свойство изотопов самопроизвольно испускать невидимое излучение супруги Кюри назвали радиоактивностью. В июле 1898 г. они сообщили об открытии ими в урановой смоляной руде нового радиоактивного элемента полония (см.). В декабре 1898 г. совместно с Бемоном (G. Bemont) они открыли радий (см.).

После открытия радиоактивных элементов ряд авторов (Беккерель, супруги Кюри, Резерфорд и др.) установил, что эти элементы могут испускать три вида лучей, которые по-разному ведут себя в магнитном поле. По предложению Резерфорда (Е. Rutherford, 1902) эти лучи были названы альфа- (см. Альфа-излучение), бета- (см. Бета-излучение) и гамма-лучами (см. Гамма-излучение). Альфа-лучи состоят из положительно заряженных альфа-частиц (дважды ионизированных атомов гелия Не4); бета-лучи— из отрицательно заряженных частиц малой массы — электронов; гамма-лучи по природе аналогичны рентгеновым лучам и представляют собой кванты электромагнитного излучения.

В 1902 г. Резерфорд и Содди (F. Soddy) объяснили явление радиоактивности самопроизвольным превращением атомов одного элемента в атомы другого элемента, происходящим по законам случайности и сопровождающимся выделением энергии в виде альфа-, бета-и гамма-лучей.

В 1910 г. М. Кюри-Склодовская вместе с Дебьерном (A. Debierne) получила чистый металлический радий и исследовала его радиоактивные свойства, в частности измерила постоянную распада радия. Вскоре был открыт ряд других радиоактивных элементов. Дебьерн и Гизель (F. Giesel) открыли актиний. Ган (О. Halm) открыл радиоторий и мезоторий, Болтвуд (В. В. Boltwood) открыл ионий, Ган и Майтнер (L. Meitner) открыли протактиний. Все изотопы этих элементов радиоактивны. В 1903 г. Пьер Кюри и Лаборд (С. A. Laborde) показали, что препарат радия имеет всегда повышенную температуру и что 1 г радия с продуктами его распада за 1 час выделяет около 140 ккал. В этом же году Рамзай (W. Ramsay) и Содди установили, что в запаянной ампуле с радием содержится газообразный гелий. Работами Резерфорда, Дорна (F. Dorn), Дебьерна и Гизеля было показано, что среди продуктов распада урана и тория имеются быстрораспадающиеся радиоактивные газы, названные эманациями радия, тория и актиния (радон, торон, актинон). Таким образом, было доказано, что при распаде атомы радия превращаются в атомы гелия и радона. Законы радиоактивных превращений одних элементов в другие при альфа- и бета-распадах (законы смещения) были впервые сформулированы Содди, Фаянсом (К. Fajans) и Расселлом (W. J. Russell).

Эти законы заключаются в следующем. При альфа-распаде всегда из исходного элемента получается другой, который расположен в периодической системе Д. И. Менделеева на две клетки левее исходного элемента (порядковый или атомный номер на 2 меньше исходного); при бета-распаде всегда из исходного элемента получается другой элемент, который расположен в периодической системе на одну клетку правее исходного элемента (атомный номер на единицу больше, чем у исходного элемента).

Изучение превращений радиоактивных элементов привело к открытию изотопов, т. е. атомов, которые обладают одинаковыми химическими свойствами и атомными номерами, но отличаются друг от друга по массе и по физическим свойствам, в частности по радиоактивным свойствам (типу излучения, скорости распада). Из большого количества открытых радиоактивных веществ новыми элементами оказались только радий (Ra), радон (Rn), полоний (Ро) и протактиний (Ра), а остальные — изотопами ранее известных урана (U), тория (Th), свинца (Pb), таллия (Tl) и висмута (Bi).

После открытия Резерфордом ядерной структуры атомов и доказательства, что именно ядро определяет все свойства атома, в частности структуру его электронных оболочек и его химические свойства (см. Атом, Ядро атомное), стало ясно, что радиоактивные превращения связаны с превращением атомных ядер. Дальнейшее изучение строения атомных ядер позволило полностью расшифровать механизм радиоактивных превращений.

Первое искусственное превращение ядер — ядерная реакция (см.) — было осуществлено Резерфордом в 1919 г. путем бомбардировки ядер атомов азота альфа-частицами полония. При этом ядра азота испускали протоны (см.) и превращались в ядра кислорода О17. В 1934 г. Ф. Жолио-Кюри и И. Жолио-Кюри (F. Joliot-Curie, I. Joliot-Curie) впервые получили искусственным путем радиоактивный изотоп фосфора бомбардируя альфа-частицами атомы Al. Ядра P30 в отличие от ядер естественно радиоактивных изотопов, при распаде испускали не электроны, а позитроны (см. Космическое излучение) и превращались в стабильные ядра кремния Si30. Таким образом, в 1934 г. были одновременно открыты искусственная радиоактивность и новый вид радиоактивного распада — позитронный распад, или β + -распад.

Супруги Жолио-Кюри высказали мысль о том, что все быстрые частицы (протоны, дейтоны, нейтроны) вызывают ядерные реакции и могут быть использованы для получения естественно радиоактивных изотопов. Ферми (Е. Fermi) с сотр., бомбардируя нейтронами различные элементы, получил радиоактивные изотопы почти всех химических элементов. В настоящее время при помощи ускоренных заряженных частиц (см. Ускорители заряженных частиц) и нейтронов осуществлено большое разнообразие ядерных реакций, в результате которых стало возможным получать любые радиоактивные изотопы.

В 1937 г. Альварес (L. Alvarez) открыл новый вид радиоактивного превращения — электронный захват. При электронном захвате ядро атома захватывает электрон с оболочки атома и превращается в ядро другого элемента. В 1939 г. Ган и Штрассманн (F. Strassmann) открыли деление ядра урана на более легкие ядра (осколки деления) при бомбардировке его нейтронами. В том же году Флеров и Петржак показали, что процесс деления ядер урана осуществляется и без внешнего воздействия, самопроизвольно. Тем самым они открыли новый вид радиоактивного превращения — самопроизвольное деление тяжелых ядер.

В настоящее время известны следующие виды радиоактивных превращений, совершающихся без внешних воздействий, самопроизвольно, в силу только внутренних причин, обусловленных структурой атомных ядер.

1. Альфа-распад. Ядро с атомным номером Z и массовым числом А испускает альфа-частицу — ядро гелия Не4— и превращается в другое ядро с Z меньшим на 2 единицы и А меньшим на 4 единицы, чем у исходного ядра. В общем виде альфа-распад записывается следующим образом:

где X — исходное ядро, Y—ядро продукта распада.

2. Бета-распад бывает двух типов: электронный и позитронный, или β — — и β + -распад (см. Бета-излучение). При электронном распаде из ядра вылетают электрон и нейтрино и образуется новое ядро с тем же массовым числом А, но с атомным номером Z на единицу большим, нем у исходного ядра:

При позитронном распаде ядро испускает позитрон и нейтрино и образуется новое ядро с тем же массовым числом, но с Z на единицу меньшим, чем у исходного ядра:

При бета-распаде в среднем 2/3 энергии ядра уносится частицами нейтрино (нейтральными частицами очень малой массы, очень слабо взаимодействующими с веществом).

3. Электронный захват (прежнее название К-захват). Ядро захватывает электрон с одной из оболочек атома, чаще всего с К-оболочки, испускает нейтрино и превращается в новое ядро с тем же массовым числом А, но с атомным номером Z меньше на 1, чем у исходного ядра.

Превращение ядер при электронном захвате и позитронном распаде одинаковое, поэтому эти два вида распада наблюдаются одновременно для одних и тех же ядер, т. е. являются конкурирующими. Так как после захвата электрона с внутренней оболочки атома на его место переходит электрон с одной из более удаленных от ядра орбит, то электронный захват сопровождается всегда испусканием рентгеновского характеристического излучения.

4. Изомерный переход. После испускания альфа- или бета-частицы некоторые типы ядер находятся в возбужденном состоянии (состоянии с избыточной энергией) и испускают энергию возбуждения в виде гамма-квантов (см.Гамма-излучение). В этом случае при радиоактивном распаде ядро, кроме альфа- или бета-частиц, испускает также гамма-кванты. Так, ядра изотопа Sr90 испускают только β-частицы, ядра Na24 испускают, кроме β-частиц, также гамма-кванты. Большинство ядер находится в возбужденном состоянии очень малые промежутки времени, не поддающиеся измерению (менее 10 —9 сек.). Однако лишь относительно небольшое число ядер может находиться в возбужденном состоянии сравнительно большие промежутки времени — до нескольких месяцев. Такие ядра называются изомерами, а соответствующие переходы их из возбужденного состояния в нормальное, сопровождающиеся испусканием только гамма-квантов,— изомерными. При изомерных переходах А и Z ядра не изменяются. Радиоактивные ядра, испускающие только альфа- или бета-частицы, называются чистыми альфа- или бета-излучателями. Ядра, у которых альфа- или бета-распад сопровождается испусканием гамма-квантов, называются гамма-излучателями. Чистыми гамма-излучателями являются только ядра, находящиеся длительное время в возбужденном состоянии, т. е. претерпевающие изомерные переходы.

5. Самопроизвольное деление ядер. В результате деления из одного ядра образуется два более легких ядра — осколки деления. Так как одинаковые ядра могут делиться различным образом на два ядра, то в процессе деления образуется много различных пар более легких ядер с различными Z и А . При делении освобождаются нейтроны, в среднем 2—3 нейтрона на один акт деления ядра, и гамма-кванты. Все образующиеся при делении осколки являются неустойчивыми и претерпевают β — -распад. Вероятность деления является очень малой для урана, но возрастает с увеличением Z. Этим объясняется отсутствие на Земле более тяжелых, чем уран, ядер. В стабильных ядрах существует определенное соотношение между числом протонов и нейтронов, при котором ядро обладает наибольшей устойчивостью, т.е. наибольшей энергией связи частиц в ядре. Для легких и средних ядер наибольшей их устойчивости соответствует примерно равное содержание протонов и нейтронов. Для более тяжелых ядер наблюдается относительное увеличение числа нейтронов в устойчивых ядрах. При избытке в ядре протонов или нейтронов ядра со средним значением А являются неустойчивыми и претерпевают β — — или β + -распады, при которых происходит взаимное превращение нейтрона и протона. При избытке нейтронов (тяжелые изотопы) происходит превращение одного из нейтронов в протон с испусканием электрона и нейтрино:

При избытке протонов (легкие изотопы) происходит превращение одного из протонов в нейтрон с испусканием либо позитрона и нейтрино (β + -распад), либо только нейтрино (электронный захват):

Все тяжелые ядра с атомным номером больше, чему Pb82, являются неустойчивыми вследствие значительного количества протонов, отталкивающих друг друга. Цепочки последовательных альфа- и бета-распадов в этих ядрах происходят до тех пор, пока не образуются устойчивые ядра изотопов свинца. С улучшением экспериментальной техники у все большего количества ядер, считавшихся ранее стабильными, обнаруживают очень медленный радиоактивный распад. В настоящее время известно 20 радиоактивных изотопов с Z меньше 82.

В результате любых радиоактивных превращений количество атомов данного изотопа непрерывно уменьшается. Закон убывания с течением времени количества активных атомов (закон радиоактивного распада) является общим для всех видов превращений и всех изотопов. Он носит статистический характер (применим только для большого количества радиоактивных атомов) и заключается в следующем. Количество активных атомов данного изотопа, распадающихся за единицу времени ΔN/Δt, пропорционально количеству активных атомов N, т. е. за единицу времени распадается всегда одна и та же доля к активных атомов данного изотопа независимо от их количества. Величина к называется постоянной радиоактивного распада и представляет собой долю активных атомов, распадающихся за единицу времени, или относительную скорость распада. к измеряется в единицах, обратных единицам измерения времени, т. е. в сек.-1 (1/сек.), сутки-1, год-1 и т. п., для каждого радиоактивного изотопа имеет свое определенное значение, которое изменяется в очень широких пределах для различных изотопов. Величина, характеризующая абсолютную скорость распада, называется активностью данного изотопа или препарата. Активность 1 г вещества называется удельной активностью вещества.

Из закона радиоактивного распада следует, что убывание количества активных атомов N сначала происходит быстро, а затем все медленнее. Время, в течение которого количество активных атомов или активность данного изотопа уменьшается в два раза, называется периодом полураспада (Т) данного изотопа. Закон убывания N от времени t является экспоненциальным и имеет следующее аналитическое выражение: N=N0e-λt, где N0 — число активных атомов в момент начала отсчета времени (г=0), N — количество активных атомов спустя время t, е — основание натуральных логарифмов (число, равное 2,718. ). Между постоянной распада к и периодом полураспада λ существует следующее соотношение: λТ—0,693. Отсюда

Периоды полураспада измеряются в сек., мин. и т. п. и для различных изотопов изменяются в очень широких пределах от малых долей секунды до 10+21 лет. Изотопы, обладающие большими λ и малыми Т, называются короткоживущими, изотопы с малыми λ и большими Т называются долгоживущими. Если активное вещество состоит из нескольких радиоактивных изотопов с различными периодами полураспада, генетически не связанных между собой, то с течением времени активность вещества также будет непрерывно уменьшаться и изотопный состав препарата будет все время изменяться: будет уменьшаться доля короткоживущих изотопов и возрастать доля долгоживущих изотопов. Через достаточно большой промежуток времени практически в препарате останется только самый долгоживущий изотоп. По кривым распада радиоактивных веществ, состоящих из одного или смеси изотопов, можно определить периоды полураспада отдельных изотопов и их относительные активности для любого момента времени.

Законы изменения активности генетически связанных изотопов качественно другие; они зависят от соотношения периодов их полураспада. Для двух генетически связанных изотопов с периодом Т1 для исходного изотопа и Т2 — продукта распада эти законы имеют наиболее простую форму. При T1>T2 активность исходного изотопа Q1 все время убывает по экспоненциальному закону с периодом полураспада Т1. Благодаря распаду ядер исходного изотопа будут образовываться ядра конечного изотопа и его активность Q2 будет возрастать. Спустя определенное время скорость распада ядер второго изотопа (станет близкой к скорости образования ядер этого изотопа из исходного (скорость распада исходного изотопа Q1) и эти скорости будут находиться в определенном и постоянном соотношении все дальнейшее время — наступает радиоактивное равновесие.

Активность исходного изотопа непрерывно убывает с периодом Т1, поэтому после достижения радиоактивного равновесия активность конечного изотопа Q2 и суммарная активность двух изотопов Q1+Q2 будут также убывать с периодом полураспада исходного изотопа Т1. При Т1>Т2 Q2=Q1. Если из исходного долгоживущего изотопа образуется последовательно несколько короткоживущих изотопов, как это имеет место в радиоактивном ряду урана и радия, то после достижения равновесия активности каждого короткоживущего изотопа становятся практически равными активности исходного изотопа. При этом общая активность равна сумме активностей всех короткоживущих продуктов распада и убывает с периодом: полураспада исходного долгоживущего изотопа, как и активность всех изотопов, находящихся в равновесии.

www.medical-enc.ru

Радиоактивность — это что такое?

В данной статье мы ознакомимся с термином «радиоактивность». Это понятие мы рассмотрим в общем виде, с точки зрения протекания процесса распада. Проанализируем главные виды излучения закон распада, исторические данные и многое другое. Отдельно остановимся на понятии «изотоп» и ознакомимся с явлением электронного распада.

Радиоактивность – это качественный параметр атомов, который позволяет некоторым изотопам распадаться в самопроизвольном порядке и испускать при этом излучение. Первое подтверждение этому утверждению было сделано Беккерелем, проводившим опыты над ураном. Именно по этой причине, лучи, испускаемые ураном, наименовывались в его честь. Явление радиоактивности – это выброс альфа- или бета-частички из ядра атома. Радиоактивность выражает себя в виде разложения атомного ядра определенного элемента и позволяет последнему превращаться из атома одного элемента в другой.

В ходе данного процесса происходит распад исходного атома с последующим превращением в атом, характеризующий другой элемент. Результатом выбрасывания четырех альфа-частиц из атомного ядра станет уменьшение массового числа, которое образует сам атом, на четыре единицы. Это приводит к сдвигу в таблице Менделеева на пару позиций влево. Данное явление вызвано тем, что в ходе «альфа-выстрела» были выброшены 2 протона и 2 нейтрона. А номер элемента, как мы помним, соответствует количеству протонов в ядре. Если выброшена была бета-частица (е — ) то следом происходит трансформация нейтрона из ядра в один протон. Это приводит к сдвигу в таблице Менделеева на одну клеточку вправо. Масса изменяется на крайне малые значения. Выброс отрицательно заряженных электронов сопряжен с излучением гамма-лучей.

Закон распада

Радиоактивность – это явление, в ходе которого происходит распад изотопа в радиоактивном виде. Этот процесс подчинен закону: чисто атомов (n), которое распадаются за единицу времени, пропорционально количеству атомов (N), которые имеются в конкретный временной момент:

В этой формуле под коэффициентом λ подразумевают постоянную величину распада радиоактивного характера, которая связана с длительностью полураспада изотоп (T) и соответствует следующему утверждению: λ =0.693/T. Из этого закона вытекает то, что после истечения отрезка времени, равного периоду полураспада, количественная величина изотопа станет меньше в два раза. Если атомы, которые образовались в ходе радиоактивного (р-ного) распада, станут обладать такой же природой, то начнется их накопление, которое длиться будет до момента установления радиоактивного равновесия между двумя изотопами: дочерним и материнским.

Теория и радиоактивный распад

Радиоактивность и распад – это взаимосвязанные объекты изучения. Первое (р-ность) становится возможным благодаря второму (процесс распада).

Понятие радиоактивного распада характеризует себя, как преображение состава или структуры строения атомного нестабильного ядра. Причем, явление это спонтанное. Происходит испускание элементарной частицы (ч-цы) или гамма кванта, а также выброс ядерных фрагментов. Соответствующие этому процессу нуклиды называют радиоактивными. Однако данным термином также называют вещества, ядра которых также относятся к радиоактивным.

Естественная радиоактивность – это распад ядер атомов, что встречаются в природе в самопроизвольном порядке. Искусственной р-тью называют тот же процесс, что мы упомянули выше, но он осуществляется человеком с применением искусственных путей, которые соответствуют особым ядерным реакциям.

Материнским и дочерним называют те ядра, которые распадаются, и те, которые образуются как конечный продукт этого распада. Массовое число и заряд дочерней структуры описывается в правиле смещения Содди.

Явление радиоактивности включает в себя разные спектры, которые зависят от типа энергии. При этом спектр альфа-частиц и y-кварков относятся к прерывистому (дискретному) типу спектра, а бета-частицы – непрерывные.

На сегодняшний день, нам известны не только альфа- гамма- и бета-распады, но и было обнаружено испускание протонов, нейтронов. Также было открыто понятие кластерной радиоактивности и спонтанного деления. Захват электронов, позитронов и двойной распад бета-частиц входят в раздел бета-распада и рассматривают как его разновидность.

Существуют изотопы, которые могут подвергаться одновременно двум или более видам распада. Примером может служить висмут 212, который с 2/3 вероятности образует таллий 208 (при применении распада альфа типа) и 1/3 приведет к возникновению полония 212 (при эксплуатации бета-распада).

Ядро, которое образовалось в ходе такого распада, иногда может обладать такими же радиоактивными свойствами, и через некоторое время будет разрушено. Явление р-ного распада происходит проще при отсутствии стабильного ядра. Цепочкой распада называют последовательность подобных процессов, а возникающие при этом нуклеотиды именуют радиоактивными ядрами. Ряды таких элементов, которые начинаются с урана 238 и 235, а также тория 232, в конечном итоге приходят в состояние стабильных нуклеотидов, соответственно свинец 206 и 207 и 208.

Явление радиоактивности позволяет некоторым ядрам (изобарам) с одинаковым массовым числом превращаться друг в друга. Это возможно благодаря бета-распаду. Каждая изобарная цепочка включает в себя от одного до трех стабильных нуклидов бета-типа (у них нет способностей к бета-распаду, однако они могут быть нестабильным, например, по отношению к иным видам р-ного распада). Весь остальной набор ядер данной цепи является бета-нестабильным. Посредством применения β-минус- или β-плюс распада, можно превратить ядро в нуклид со β-стабильной формой. Если в изобарной цепи находятся такие нуклиды, то ядро может начать подвергаться бета- положительному или отрицательному распаду. Это явление называют электронным захватом. Примером может служить распад радионуклида калий 40 на соседние β-стабильные состояния аргона 40 и кальция 40.

Об изотопах

Радиоактивность – это, в первую очередь, распад изотопов. В настоящее время человеку известно более сорока изотопов, обладающих радиоактивность и находящихся в естественных условиях. Преобладающее количество расположилось в р-ных рядах: уран-радий, торий и актиний. Все эти частички существуют и распространяются в природе. Они могут присутствовать в горной породе, водах мирового океана, растениях и животных и т.д., а также они обуславливают явление естественной природной радиоактивности.

Помимо естественного ряда р-ных изотопов, человеком было создано более тысячи искусственных видов. Способ получения чаще всего реализует себя в ядерных реакторах.

Множество р-ных изотопов используют и применяют в медицинских целях, например, для борьбы с раком. Очень большое значение они имеют в области диагностики.

Общие сведения

Суть радиоактивности заключается в том, что атомы могут самопроизвольно превращаться из одних в другие. При этом они приобретают более устойчивую или стабильную структуру ядра. Р-ное ядро в ходе трансформации активно выделяет энергетические ресурсы атома, которые принимают вид заряженных частиц или доходят до состояния гамма-квантов; последние в свою очередь образуют либо соответствующее (гамма), либо электромагнитное излучение.

Мы уже знаем о существовании радиоактивных изотопов искусственной и естественной природы. Важно понимать, что между ними нет особого и/или принципиального различия. Это обуславливается свойствами ядер, которые определяться могут только в соответствие структурированием ядра, и они не зависят путей создания.

Из истории

Как и говорилось ранее, открытие радиоактивности произошло благодаря трудам Беккереля, которые были совершены в 1896 году. Этот процесс был выявлен в ходе проведения экспериментов над ураном. Если конкретнее, то ученый старался вызвать эффект почернения фотоэмульсии и подвергнуть воздух ионизации. Мадам Кюри-Склодовская была первой особой, которая измерила величину интенсивности излучения U. А одновременно с ученым из Германии Шмидтом, она выявила р-ность тория. Именно супружеская пара Кюри, после открытия невидимого излучения, наименовала его радиоактивным. В 1898 году ими же было совершено обнаружение полония – еще одного р-ного элемента, который залегал в урановых смоляных рудах. Радий были открыт супругами Кюри также в 1898 г., но немного ранее. Работа была совершена вместе с Бемоном.

После того как было открыто множество р-ных элементов, немалым количеством авторов было доказано и продемонстрировано, что все они обуславливают излучение трех видов, которые изменяют свое поведение в условиях магнитного поля. Единицей радиоактивности служит беккерель (Бк, или Bq). Резерфорд предложил назвать обнаруженные лучи альфа-, бета- и гамма-лучами.

Альфа-излучение – это набор частиц с положительным зарядом. Бета-лучи образуются при помощи электронов, частиц с отрицательным зарядом и малой массой. Гамма-лучи являются аналогом рентгеновских лучей и представлены в виде электромагнитных квантов.

В 1902 году Резерфордом и Содди было объяснено явление радиоактивности посредством произвольной трансформации атома одного элемента в другой. Данный процесс подчинялся законам случайности и сопровождался выделением энергетических ресурсов, которые приняли вид гамма-, бета- и альфа-лучей.

Естественную радиоактивность исследовала М. Кюри совместно с Дебьерном. Они получили в 1910 году металл – радий – в чистом виде, и исследовали его свойства. В частности, внимание уделялось измерению постоянного распада. Дебьерн и Гизель совершили открытие актиния, а Ган обнаружил такие атомы, как радиотории и мезотории. Болтвудом был описан ионий, а Ган и Майтнер совершили открытие протактиния. Каждый изотоп упомянутых элементов, которые были отрыты, обладает радиоактивными свойствами. Пьером Кюри и Лабордом в 1903 году было описано явление распада радия. Они показали, что продукты реакции 1 грамма Ra за один час распада выделяют около ста сорока ккал. В том же году Рамзаем и Содди было установлено, что запаянная ампула с радием содержит в себе и гелий в газообразном виде.

Труды таких ученых, как Резерфорд, Дорн, Дебьерн и Гизель, показывают нам, что в общий список продуктов распада U и Th включает в себя некоторые быстрораспадающиеся вещества – газы. Они обладают собственной радиоактивностью, а называют их ториевыми или радиевыми эманациями. Также это касается актиния. Они доказали, что при распаде радий создает гелий и радон. Закон радиоактивности о превращении элементов был впервые сформулирован Содди, Расселом и Фаянсом.

Виды излучения

Открытием явления, которое мы изучаем в этой статье, впервые занялся Беккерель. Именно он обнаружил явление распада. Потому единицы радиоактивности называют беккерелями (Бк). Однако, один из самых больших вкладов в развитие учения об р-ности сделал Резерфорд. Он сосредоточил собственные ресурсы внимания на анализе изучаемого распада и смог установить природу данных превращений, а также определить излучение, которое им сопутствует.

Основу его умозаключений составляет постулирование о наличии альфа-, гамма- и бета-излучения, которые испускаются естественными радиоактивными элементами, а измерение радиоактивности позволило вычленить следующие их виды:

  • Β-излучение наделено сильными свойствами проникающей способности. Оно гораздо мощнее альфа-излучения, но точно так же поддается отклонению в магнитном и/или электрическом поле в сторону, противоположную большему расстоянию. Это служит объяснением и доказательством того, что данные частицы – отрицательно заряженные е — . Сделать выводы о том, что излучаются именно электроны, Резерфорд смог на основе анализа соотношения массы к заряду.
  • Α-излучение – волны лучей, которые в условиях атмосферного давления способны преодолеть только маленькие расстояния (обычно не более 7.5 сантиметра). Если поместить его в х вакуум, то можно будет наблюдать, как магнитное и электрическое поле воздействуют на альфа-излучение и приводят к его отклонению от исходной траектории. Анализируя направление и величину отклонения, а также учитывая соотношение между зарядом и массой (e/m), мы можем прийти к выводу, что данное излучение является потоком частиц с положительным зарядом. Соотношение параметров веса и заряда является идентичным значению дважды ионизированного гелиевого атома. На основе своих работ и с использованием спектроскопических исследований, Резерфорд установил, что альфа-излучение образуется ядрами гелия.
  • γ-излучение – вид радиоактивности, который обладает самой большой проникающей способностью среди других видов излучения. Оно не поддается отклонению посредством влияния магнитного поля, а также не обладает зарядом. Это «жесткое» излучение, которое самым нежелательным образом способно воздействовать на живую материю.

Радиоактивное превращение

Еще одним моментом в становлении и конкретизации определения радиоактивности является открытие Резерфордом ядерных структур атомов. Что не менее важно, так это установление взаимосвязи между рядом свойств атома и структурой его ядра. Ведь именно «сердцевина» частицы определяет структуру оболочки электронов и все свойства химического характера. Именно это позволило в полной мере расшифровать принципы и механизм, посредством которых происходит радиоактивное превращение.

Первое успешное превращение ядра было совершено в 1919 году Эрнестом Резерфордом. Он использовал «бомбардировку» ядра атома N с применением альфа-частиц полония. Следствием этого стало испускание азотом протонов с последующим превращением в кислородные ядра – O17.

В 1934 году супруги Кюри получили радиоактивные изотопы фосфора посредством искусственной радиоактивности. Они воздействовали на алюминий альфа-частичками. Полученные ядра P30 имели некоторые отличия от естественных р-ных форм того же элемента. Например, в ходе распада испускались не электронные частички, а позитронные. Далее они трансформировались в стабильные кремниевые ядра (Si30). В 1934 было совершено открытие искусственной радиоактивности и явление позитронного распада.

Захват электрона

Одним из классов радиоактивности является электронный захват (К-захват). В нем электроны захватываются прямо с оболочек атомов. Как правило, К-оболочка испускает некоторое количество нейтронов, а далее преобразуется в новую «сердцевину» атома с таким же показателем массового числа (А). Однако номер атома (Z) становится меньше на 1, в сравнение с исходным ядром.

Процесс превращения ядра в ходе электронного захвата и позитронного распада является действием, аналогичным друг другу. Потому их можно увидеть одновременно в ходе наблюдения за набором атомов одного вида. Электронный захват всегда сопровождается выделением излучения в рентгеновском виде. Это объясняется переходом электрона от более удаленной ядерной орбитали к ближе лежащей. Данное явление, в свою очередь, объясняется тем, что электроны вырываются с орбит, которые расположены ближе к ядру, а их место стремятся заполнить частички с удаленных уровней.

Понятие изомерного перехода

Явление изомерного перехода основано на том, что испускание альфа- и/или бета-частичек приводит к возбуждению некоторых ядер, которые находятся в состоянии избыточных энергий. Испускаемые ресурсы «вытекают» в виде возбужденных гамма-квантов. Изменение состояния ядра в ходе р-ного распада приводит к образованию и выделению всех трех типов частиц.

Изучение изотопа стронция 90 позволило определить, что им испускаются только β-частички, а ядра, например, натрия 24, могут выделять также гамма-кванты. Преобладающее множество атомов пребывают в возбужденном состоянии крайне мало. Это значение столь краткосрочное (10 -9 ) и малое, что его еще нельзя измерить. Соответственно, лишь небольшой процент ядер способен находиться в состоянии возбуждения сравнительно длительный период времени (вплоть до месяцев).

Ядра способные «жить» так долго, именуют изомерами. Сопутствующие переходы, которые наблюдаются при трансформации из одного состояния в другое и сопровождаются испусканием гамма-квантовых частичек, называют изомерными. Радиоактивность излучения в данном случае приобретает высокие и опасные для жизни значения. Ядра, которые испускают лишь бета- и/или альфа-частицы, именуют чистыми ядрами. Если в ядре наблюдается испускание гамма-квантов в ходе его распада, то его называют гамма-излучателем. Чистым излучателем последнего вида можно назвать только ядро, претерпевающее множество изомерных переходов, что возможно лишь при длительном существовании в возбужденном состоянии.

fb.ru